1. Examples handout questions 10 through 19
2. Consider the following circuit:
$F(A, B, C, D)=A B D+B \bar{C} D+\bar{A} C$
(a) What input transitions could potentially produce a hazard?
(b) Give an alternative circuit with the same output as F that does not have any hazards.
(c) Give a minimal product-of-sums implementation of F and explain whether there are or are not any static hazards.
3. What is c_{5}, the boolean formula for the fifth carry-out bit using the fast-carry scheme described in the lecture notes? How do the number of gate delays required to compute c_{5} compare to the number of gate delays required for c_{4} (hint: consider the most optimal way of parallelising the c_{4} and c_{5} computations)?
4. Using a 1-of-8 decoder and OR gates create a circuit that takes a 3-bit number $A_{2} A_{1} A_{0}$ and outputs the number of 1's in the input as a 2-bit number $Z_{1} Z_{0}$.
5. Page 86 of the lecture notes explains that a T flip-flop is essentially a J-K flip-flop with its inputs tied together (e.g., the diagram below, on the left).

It is possible to do something similar to implement a D flip-flop, starting with a T flip-flop. Determine the logic that needs to go in the dotted box for the overall circuit to behave like a D flip-flop. Hint: The circuit inside the box will need to use Q, the output of the T flip-flop.
6. Draw a state machine that takes in a sequence of bits at its input IN and outputs 1 if the number of 1's it has seen is even, 0 otherwise. Also, if the machine ever encounters the bit sequence 1001, it should output 0 regardless of the input. You don't need to actually implement the logic for this state machine (just drawing state machine diagram is sufficient).
7. Design a 3 flip-flop counter that transitions through states $Q_{2} Q_{1} Q_{0}=000,100$, $110,111,011,001$ and then repeats.

