1. Examples handout questions 10 through 19

2. Consider the following circuit:

\[F(A, B, C, D) = ABD + BCD + \overline{AC} \]

(a) What input transitions could potentially produce a hazard?

(b) Give an alternative circuit with the same output as \(F \) that does not have any hazards.

(c) Give a minimal product-of-sums implementation of \(F \) and explain whether there are or are not any static hazards.

3. What is \(c_5 \), the boolean formula for the fifth carry-out bit using the fast-carry scheme described in the lecture notes? How do the number of gate delays required to compute \(c_5 \) compare to the number of gate delays required for \(c_4 \) (hint: consider the most optimal way of parallelising the \(c_4 \) and \(c_5 \) computations)?

4. Using a 1-of-8 decoder and OR gates create a circuit that takes a 3-bit number \(A_2A_1A_0 \) and outputs the number of 1’s in the input as a 2-bit number \(Z_1Z_0 \).

5. Page 86 of the lecture notes explains that a T flip-flop is essentially a J-K flip-flop with its inputs tied together (e.g., the diagram below, on the left).

![T flip-flop diagram](image)

It is possible to do something similar to implement a D flip-flop, starting with a T flip-flop. Determine the logic that needs to go in the dotted box for the overall circuit to behave like a D flip-flop. \textit{Hint: The circuit inside the box will need to use} \(Q \), \textit{the output of the T flip-flop}.

6. Draw a state machine that takes in a sequence of bits at its input IN and outputs 1 if the number of 1’s it has seen is even, 0 otherwise. Also, if the machine ever encounters the bit sequence 1001, it should output 0 regardless of the input. You don’t need to actually implement the logic for this state machine (just drawing state machine diagram is sufficient).
7. Design a 3 flip-flop counter that transitions through states $Q_2Q_1Q_0 = 000$, 100, 110, 111, 011, 001 and then repeats.