1. Define one ‘bit-time’ as the time it takes for a network interface to place a bit onto a link. Two hosts, A and B, are connected by a link over some distance. On this link, it takes 340 bit-times for data to propagate from one host to the other (but the hosts have no way of knowing this). Messages on the link have a size of 576 bits.

Consider the case where at time 0, A sends a single message. At some later time t, B begins transmitting a message of its own.

(a) For what values of t will there be a collision?
(b) For what values of t will there be a collision that A is not aware of?
(c) For what values of t will there be a collision that neither A nor B is aware of?
(d) How do your answers change if A and B are separated by 1000 bit-times?

2. Consider the following topology of devices within a LAN.

(a) If the circles represent Ethernet hubs, what problem will arise?
(b) If the circles represent Ethernet switches that implement the spanning tree protocol (the switch IDs are the numbers within the circles, assume all links have a distance of 1), what is the resulting spanning tree that is formed?
(c) How does the tree change if switches 1 and 3 are removed?

3. A common recommendation for setting up Wi-Fi access points in a building is to give adjacent APs different channels as in the figure below. Another recommendation, which seems counter-intuitive at first, is to reduce the transmission
power of each AP for better performance. Explain why these recommendations make sense within the context of a building.

4. The operations a router perform are typically divided into a control plane and a data plane.

 (a) What is the difference between forwarding and routing? On which plane does each belong?

 (b) To which plane does the cross-bar (more generally called the interconnect) belong?

 (c) What is the purpose of a routing table? What plane does the routing table belong to?