1. Routers typically employ many buffers/queues in their design.
 (a) What is the purpose of the buffer at the input ports of the router? When would the user need to use this buffer? Describe a situation when this buffer might fill up to its capacity.
 (b) What is the purpose of the buffer at the output ports of the router? When would the user need to use this buffer? Describe a situation when this buffer might fill up to its capacity.
 (c) Give one reasonable course of action for a router to do when a buffer is completely full.

2. Layer 2 switches and Layer 3 routers have similar functionality in that they take a chunk (e.g., frame and packet, respectively) of data coming in on one port and send it out on a different one. Where there is a switch in a network, it is usually possible to replace it with a router and vice-versa. Let’s examine some of the reasons influencing a network engineer’s choice to use a switch (and make the LAN bigger) versus a router (to connect two separate LANs).
 (a) What are some pros and cons of switches versus routers when considering management and set-up?
 (b) What are some pros and cons of switches versus routers when considering network size?
 (c) What are some pros and cons of switches versus routers when considering how efficiently the packet traverses the network?

3. Consider the following network:
The following table above shows a routing table on node A before any distance vector updates have been received (assume A knows the cost of reaching its immediate neighbours). As you can see, each row of the table stores the distance to a particular node through one of A’s neighbours.

<table>
<thead>
<tr>
<th>to/via</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>F</td>
<td>∞</td>
<td>∞</td>
<td>2</td>
</tr>
</tbody>
</table>

(a) What does the table look like when A receives the initial distance vector update from node C?

(b) What does the table look like when A receives the initial distance vector update from node B?

(c) What does the table look like in the steady state, after several updates?

4. For this question you will design a custom link-state routing system for a network. You can assume that all links are bi-directional and every node has a unique network identifier of four bytes. You can also assume that the link layer provides a mechanism for a node to exchange arbitrary messages with its immediate neighbours.

(a) Design the messages that nodes will exchange to obtain information about the state of the link between itself and its immediate neighbours.

(b) Describe the steps (using the messages you designed above) that nodes should follow in order to collect link state information from their immediate neighbours.

(c) Design an appropriate link-state message for communicating link-state information across the entire network.

(d) Describe the steps nodes should employ to share out the link-state messages in designed in the previous part.

(e) A network using your system has \(n \) nodes, \(l \) links, the maximum degree of any node is \(k \) and there is a path between any two nodes of not more than \(d \) hops. Give a bound on the total amount of information which must be transmitted (in bytes) to ensure that every node acquires complete topology information, in terms of \(n, l, k \) and \(d \).
5. You are attempting to get two computers (computer A and computer B) on the same Ethernet network connected over IP manually (i.e., no DHCP server on the network). You set computer A’s IP to be 172.16.123.10 with subnet mask /25 (sometimes written as 255.255.255.128).

(a) What is a possible IP address you could assign to computer B that would allow A to communicate with B over the LAN?

(b) What would happen if on computer B you made a typo and set the subnet mask on computer B to /24?

(c) What would happen if instead your typo had set the subnet mask to /29?

6. As you know, every network card is given a globally unique MAC address. Someone proposes that we could do away with having to configure IP addresses on computers if we simply used the MAC address as a device’s IP address (adjusting the size of the address field accordingly). Explain why this could be a bad idea.

7. IPv6 Addresses

(a) Write the following IPv6 address in shortened form:

 2041:0000:140F:0000:0000:0000:875B:131B

(b) Suppose the network interface has hardware id 00:e0:4c:53:44:58. What should the link-local IPv6 address for that interface be? Explain why on Windows and Mac OS X the address the computer picks might not match the address specified in the RFC.

(c) My ISP provides each customer a /56 IPv6 network block. If my IP is 2a00:23c4:bfb9:6801:a58f:b33f:26ad:d13c, what is the routing prefix? How many subnets can I have on my network?

8. DHCP and SLAAC

(a) When a host first joins an IPv4 network, to obtain an IP address via DHCPv4, how does it know the IP address of the DHCP server to send a packet to?

(b) How does a DHCPv4 server send a reply message back to a new host when the new host does not have an IP yet?

(c) What is the point of the gateway IP provided in the DHCPv4 message?
(d) DHCPv6 messages differ from DHCPv4 messages in that they no longer require information about DNS servers and gateway IPs. What other source can hosts obtain this information from instead?